{ [A:Type]. [B:A  Type]. [f:a:A fp-B[a]]. [eq:EqDecider(A)]. [x:A].
    f(x)  B[x] supposing x  dom(f) }

{ Proof }



Definitions occuring in Statement :  fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] fpf: a:A fp-B[a] so_apply: x[s] uimplies: b supposing a fpf-dom: x  dom(f) member: t  T fpf-ap: f(x) so_lambda: x.t[x] top: Top all: x:A. B[x] subtype: S  T prop: implies: P  Q iff: P  Q and: P  Q
Lemmas :  pi2_wf l_member_wf assert_wf deq-member_wf pi1_wf_top deq_wf assert-deq-member

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].
    f(x)  \mmember{}  B[x]  supposing  \muparrow{}x  \mmember{}  dom(f)


Date html generated: 2011_08_10-AM-07_55_31
Last ObjectModification: 2011_06_18-AM-08_16_42

Home Index