{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [f,g:a:A fp-B[a]].
    f || g supposing l_disjoint(A;fst(f);fst(g)) }

{ Proof }



Definitions occuring in Statement :  fpf-compatible: f || g fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) function: x:A  B[x] universe: Type l_disjoint: l_disjoint(T;l1;l2) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] fpf: a:A fp-B[a] so_apply: x[s] uimplies: b supposing a fpf-compatible: f || g all: x:A. B[x] implies: P  Q and: P  Q fpf-dom: x  dom(f) fpf-ap: f(x) pi2: snd(t) member: t  T prop: top: Top subtype: S  T pi1: fst(t) l_disjoint: l_disjoint(T;l1;l2) iff: P  Q not: A false: False
Lemmas :  assert_wf deq-member_wf pi1_wf_top l_member_wf l_disjoint_wf deq_wf assert-deq-member

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].
    f  ||  g  supposing  l\_disjoint(A;fst(f);fst(g))


Date html generated: 2011_08_10-AM-08_05_48
Last ObjectModification: 2011_06_18-AM-08_23_28

Home Index