{ [A:Type]. [eq:EqDecider(A)]. [f:a:A fp-Top].
    (fpf-dom-list(f)  {a:A| a  dom(f)}  List) }

{ Proof }



Definitions occuring in Statement :  fpf-dom-list: fpf-dom-list(f) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uall: [x:A]. B[x] top: Top member: t  T set: {x:A| B[x]}  list: type List universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] member: t  T fpf-dom: x  dom(f) fpf-dom-list: fpf-dom-list(f) pi1: fst(t) prop: so_lambda: x.t[x] fpf: a:A fp-B[a] uimplies: b supposing a rev_implies: P  Q iff: P  Q all: x:A. B[x] and: P  Q implies: P  Q so_apply: x[s]
Lemmas :  list-set-type subtype_rel_list l_member_wf assert_wf deq-member_wf assert-deq-member fpf_wf top_wf deq_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].    (fpf-dom-list(f)  \mmember{}  \{a:A|  \muparrow{}a  \mmember{}  dom(f)\}    List)


Date html generated: 2011_08_10-AM-08_09_24
Last ObjectModification: 2011_06_18-AM-08_25_43

Home Index