{ [X,Y:Type]. [eq:EqDecider(Y)]. [f:x:X fp-Top]. [x:Y].
    (x  X) supposing ((x  dom(f)) and strong-subtype(X;Y)) }

{ Proof }



Definitions occuring in Statement :  fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top member: t  T universe: Type deq: EqDecider(T) strong-subtype: strong-subtype(A;B)
Definitions :  member: t  T all: x:A. B[x] subtype: S  T fpf: a:A fp-B[a] fpf-dom: x  dom(f) pi1: fst(t) implies: P  Q iff: P  Q uall: [x:A]. B[x] and: P  Q strong-subtype: strong-subtype(A;B) cand: A c B uimplies: b supposing a
Lemmas :  assert-deq-member strong-subtype-l_member-type

\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    (x  \mmember{}  X)  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  strong-subtype(X;Y))


Date html generated: 2011_08_10-AM-07_55_13
Last ObjectModification: 2011_06_18-AM-08_16_30

Home Index