{ [M:Type  Type]
    n:
      [T:Type]
        (input-codeable(lp.M[lp];n;T)  (i:Id. ext-codeable(lp.M[lp];n;T))) }

{ Proof }



Definitions occuring in Statement :  ext-codeable: ext-codeable(lp.M[lp];n;T) input-codeable: input-codeable(lp.M[lp];n;T) Id: Id nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type
Definitions :  eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] void: Void unit: Unit limited-type: LimitedType assert: b input-code: input-code(lp.M[lp];n;T;code;decode) so_apply: x[s] member: t  T strong-subtype: strong-subtype(A;B) atom: Atom$n ge: i  j  less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B process-input': process-input'(lp.M[lp];n) top: Top union: left + right equal: s = t and: P  Q uall: [x:A]. B[x] isect: x:A. B[x] prop: all: x:A. B[x] exists: x:A. B[x] product: x:A  B[x] list: type List Id: Id input-codeable: input-codeable(lp.M[lp];n;T) universe: Type function: x:A  B[x] so_lambda: x.t[x] nat: set: {x:A| B[x]}  int: le: A  B not: A false: False implies: P  Q ext-codeable: ext-codeable(lp.M[lp];n;T) MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  Try: Error :Try,  pi2: snd(t) apply: f a it: inr: inr x  list_ind: list_ind def lambda: x.A[x] nil: [] pair: <a, b> cons: [car / cdr] decide: case b of inl(x) =s[x] | inr(y) =t[y] ExRepD: Error :ExRepD
Lemmas :  top_wf Id_wf process-input'_wf ext-codeable_wf nat_wf input-codeable_wf it_wf unit_wf member_wf pi2_wf equal-top

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n:\mBbbN{}.  \mforall{}[T:Type].  (input-codeable(lp.M[lp];n;T)  {}\mRightarrow{}  (\mforall{}i:Id.  ext-codeable(lp.M[lp];n;T)))


Date html generated: 2011_08_17-PM-06_39_42
Last ObjectModification: 2011_06_18-PM-12_05_50

Home Index