{ [k:Knd]. [f,g:Top].
    kindcase(k;a.f[a];l,t.g[l;t]) ~ f[act(k)] supposing islocal(k) }

{ Proof }



Definitions occuring in Statement :  kindcase: kindcase(k;a.f[a];l,t.g[l; t]) actof: act(k) islocal: islocal(k) Knd: Knd assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] sqequal: s ~ t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a assert: b islocal: islocal(k) kindcase: kindcase(k;a.f[a];l,t.g[l; t]) actof: act(k) member: t  T bnot: b isl: isl(x) ifthenelse: if b then t else f fi  lnk: lnk(k) tagof: tag(k) outr: outr(x) btrue: tt bfalse: ff pi1: fst(t) outl: outl(x) pi2: snd(t) Knd: Knd false: False rcv: rcv(l,tg) prop:
Lemmas :  false_wf top_wf true_wf assert_wf islocal_wf Knd_wf

\mforall{}[k:Knd].  \mforall{}[f,g:Top].    kindcase(k;a.f[a];l,t.g[l;t])  \msim{}  f[act(k)]  supposing  \muparrow{}islocal(k)


Date html generated: 2011_08_10-AM-07_46_10
Last ObjectModification: 2011_06_18-AM-08_12_04

Home Index