{ [A,B,C:Type]. [P:dataflow(A;B)]. [f:B  C].
    (map-dataflow(P;b.f[b])  dataflow(A;C)) }

{ Proof }



Definitions occuring in Statement :  map-dataflow: map-dataflow(P;b.f[b]) dataflow: dataflow(A;B) uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] universe: Type
Definitions :  map-dataflow: map-dataflow(P;b.f[b]) dataflow: dataflow(A;B) equal: s = t member: t  T isect: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] universe: Type so_apply: x[s] apply: f a axiom: Ax all: x:A. B[x] rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) uimplies: b supposing a let: let so_lambda: x y.t[x; y] lambda: x.A[x] spread: spread def dataflow-ap: df(a) pair: <a, b>
Lemmas :  dataflow-ap_wf dataflow_wf rec-dataflow_wf

\mforall{}[A,B,C:Type].  \mforall{}[P:dataflow(A;B)].  \mforall{}[f:B  {}\mrightarrow{}  C].    (map-dataflow(P;b.f[b])  \mmember{}  dataflow(A;C))


Date html generated: 2011_08_10-AM-08_17_02
Last ObjectModification: 2010_12_31-PM-12_45_56

Home Index