{ [A:Type]
    f:a:A fp-Top. eq:EqDecider(A). x:A.
      (x  dom(f)  (x  fpf-domain(f))) }

{ Proof }



Definitions occuring in Statement :  fpf-domain: fpf-domain(f) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q universe: Type l_member: (x  l) deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q fpf-dom: x  dom(f) fpf-domain: fpf-domain(f) pi1: fst(t) member: t  T so_lambda: x.t[x] prop: and: P  Q implies: P  Q rev_implies: P  Q fpf: a:A fp-B[a] so_apply: x[s]
Lemmas :  deq_wf fpf_wf top_wf assert_wf deq-member_wf l_member_wf iff_functionality_wrt_iff assert-deq-member

\mforall{}[A:Type].  \mforall{}f:a:A  fp->  Top.  \mforall{}eq:EqDecider(A).  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(f)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fpf-domain(f)))


Date html generated: 2011_08_10-AM-07_54_52
Last ObjectModification: 2011_06_18-AM-08_15_16

Home Index