{ mlt_inning_step()     List     + (    )  (   List  ) }

{ Proof }



Definitions occuring in Statement :  mlt_inning_step: mlt_inning_step() nat: member: t  T function: x:A  B[x] product: x:A  B[x] union: left + right list: type List int:
Definitions :  equal: s = t member: t  T nat: int: list: type List product: x:A  B[x] union: left + right pair: <a, b> inr: inr x  cons: [car / cdr] universe: Type natural_number: $n le: A  B ge: i  j  set: {x:A| B[x]}  function: x:A  B[x] all: x:A. B[x] subtract: n - m eq_int: (i = j) bool: ifthenelse: if b then t else f fi  spread: spread def inl: inl x  decide: case b of inl(x) =s[x] | inr(y) =t[y] spreadn: spread3 fpf: a:A fp-B[a] l_member: (x  l) apply: f a so_apply: x[s] implies: P  Q or: P  Q guard: {T} assert: b lambda: x.A[x] mlt_inning_step: mlt_inning_step()
Lemmas :  member_wf ifthenelse_wf eq_int_wf nat_properties nat_wf

mlt\_inning\_step()  \mmember{}  \mBbbN{}  \mtimes{}  \mBbbZ{}  List  \mtimes{}  \mBbbN{}  {}\mrightarrow{}  \mBbbZ{}  +  (\mBbbN{}  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbZ{})  {}\mrightarrow{}  (\mBbbN{}  \mtimes{}  \mBbbZ{}  List  \mtimes{}  \mBbbN{})


Date html generated: 2010_08_27-PM-08_30_37
Last ObjectModification: 2010_06_23-PM-11_57_09

Home Index