{ [T,A:Type].  x:T. eq:EqDecider(T).  (A  non-void(x : A)) }

{ Proof }



Definitions occuring in Statement :  non-void-decl: non-void(d) fpf-single: x : v uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q non-void-decl: non-void(d) prop: member: t  T so_lambda: x y.t[x; y] iff: P  Q so_apply: x[s1;s2] and: P  Q rev_implies: P  Q
Lemmas :  fpf-all-single-decl deq_wf

\mforall{}[T,A:Type].    \mforall{}x:T.  \mforall{}eq:EqDecider(T).    (A  {}\mRightarrow{}  non-void(x  :  A))


Date html generated: 2011_08_10-AM-08_09_08
Last ObjectModification: 2011_06_18-AM-08_25_33

Home Index