{ [M:Type  Type]
    norm-component  id-fun(component(P.M[P])) supposing M[Top] }

{ Proof }



Definitions occuring in Statement :  norm-component: norm-component component: component(P.M[P]) uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] member: t  T function: x:A  B[x] universe: Type id-fun: id-fun(T)
Definitions :  int: atom: Atom rec: rec(x.A[x]) quotient: x,y:A//B[x; y] set: {x:A| B[x]}  tunion: x:A.B[x] b-union: A  B union: left + right list: type List eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] atom: Atom$n strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B value-type: value-type(T) lambda: x.A[x] so_lambda: x.t[x] sq-id-fun: sq-id-fun(T) norm-pair: norm-pair(Na;Nb) all: x:A. B[x] top: Top component: component(P.M[P]) uall: [x:A]. B[x] universe: Type id-fun: id-fun(T) product: x:A  B[x] Id: Id Process: Process(P.M[P]) norm-component: norm-component function: x:A  B[x] axiom: Ax uimplies: b supposing a isect: x:A. B[x] so_apply: x[s] apply: f a equal: s = t member: t  T Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Try: Error :Try,  tactic: Error :tactic
Lemmas :  top_wf norm-pair_wf value-type_wf member_wf id-fun_wf subtype_rel_wf atom2-value-type Process-value-type Id_wf Process_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-component  \mmember{}  id-fun(component(P.M[P]))  supposing  M[Top]


Date html generated: 2011_08_16-PM-06_50_50
Last ObjectModification: 2011_06_18-AM-11_05_20

Home Index