{ norm-esharp-rule() 
 id-fun(E#Rule) }
{ Proof }
Definitions occuring in Statement : 
norm-esharp-rule: norm-esharp-rule(), 
esharp-rule: E#Rule, 
member: t 
 T, 
id-fun: id-fun(T)
Definitions : 
norm-fst: norm-fst(N), 
isect:
x:A. B[x], 
eclass: EClass(A[eo; e]), 
equal: s = t, 
member: t 
 T, 
function: x:A 
 B[x], 
all:
x:A. B[x], 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
set: {x:A| B[x]} , 
assert:
b, 
list: type List, 
name: Name, 
rec: rec(x.A[x]), 
expression: Expression, 
bool:
, 
Id: Id, 
product: x:A 
 B[x], 
id-fun: id-fun(T), 
implies: P 
 Q, 
value-type: value-type(T), 
lambda:
x.A[x], 
apply: f a, 
prop:
, 
so_lambda: 
x.t[x], 
intensional-universe: IType, 
limited-type-level: limited-type-level{i:l}(n;T), 
nat:
, 
exists:
x:A. B[x], 
quotient: x,y:A//B[x; y], 
tunion:
x:A.B[x], 
b-union: A 
 B, 
union: left + right, 
atom: Atom, 
tag-by: z
T, 
or: P 
 Q, 
rev_implies: P 
 Q, 
and: P 
 Q, 
iff: P 

 Q, 
ldag: LabeledDAG(T), 
labeled-graph: LabeledGraph(T), 
record: record(x.T[x]), 
isect2: T1 
 T2, 
record+: record+, 
fset: FSet{T}, 
top: Top, 
true: True, 
type-monotone: Monotone(T.F[T]), 
norm-snd: norm-snd(N), 
sq-id-fun: sq-id-fun(T), 
norm-pair: norm-pair(Na;Nb), 
norm-esharp-rule: norm-esharp-rule(), 
esharp-rule: E#Rule, 
subtype: S 
 T, 
es-E-interface: E(X), 
fpf-sub: f 
 g, 
fpf-cap: f(x)?z, 
deq: EqDecider(T), 
ma-state: State(ds), 
class-program: ClassProgram(T), 
universe: Type, 
limited-type: LimitedType, 
subtype_rel: A 
r B, 
atom: Atom$n, 
int:
, 
squash:
T, 
mkid: "$x"
Lemmas : 
norm-fst_wf, 
squash_wf, 
subtype-value-type, 
norm-pair_wf, 
norm-snd_wf, 
type-monotone_wf, 
subtype_rel_sum, 
subtype_rel_simple_product, 
subtype_rel_wf, 
expression_wf, 
name_wf, 
function-value-type, 
union-value-type, 
bunion-value-type, 
tunion-value-type, 
set-value-type, 
quotient-value-type, 
rec-value-type, 
equal-value-type, 
type-value-type, 
intensional-universe_wf2, 
nat_wf, 
limited-type-level_wf, 
intensional-universe_wf, 
list-value-type, 
product-value-type, 
limited-type_wf, 
value-type_wf, 
assert_wf, 
Id_wf, 
id-fun_wf, 
member_wf, 
bool_wf
norm-esharp-rule()  \mmember{}  id-fun(E\#Rule)
Date html generated:
2011_08_17-PM-04_35_54
Last ObjectModification:
2010_09_21-PM-01_19_47
Home
Index