{ [A:']. [B:Type].  (null-dataflow()  dataflow(A;bag(B))) }

{ Proof }



Definitions occuring in Statement :  null-dataflow: null-dataflow() dataflow: dataflow(A;B) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  empty-bag: Error :empty-bag,  pair: <a, b> lambda: x.A[x] unit: Unit it: so_lambda: x y.t[x; y] apply: f a let: let uimplies: b supposing a function: x:A  B[x] all: x:A. B[x] rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) dataflow: dataflow(A;B) bag: Error :bag,  null-dataflow: null-dataflow() axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] equal: s = t member: t  T universe: Type
Lemmas :  rec-dataflow_wf Error :bag_wf,  it_wf Error :empty-bag_wf,  unit_wf

\mforall{}[A:\mBbbU{}'].  \mforall{}[B:Type].    (null-dataflow()  \mmember{}  dataflow(A;bag(B)))


Date html generated: 2011_08_10-AM-08_17_58
Last ObjectModification: 2011_02_03-PM-01_01_03

Home Index