{ [A:']. [B:Type].
    (df-program-meaning(null-df-program(B)) = null-dataflow()) }

{ Proof }



Definitions occuring in Statement :  null-df-program: null-df-program(B) df-program-meaning: df-program-meaning(dfp) null-dataflow: null-dataflow() dataflow: dataflow(A;B) uall: [x:A]. B[x] universe: Type equal: s = t bag: bag(T)
Definitions :  void: Void top: Top pi1: fst(t) pi2: snd(t) prop: apply: f a so_apply: x[s1;s2] implies: P  Q exists: x:A. B[x] inl: inl x  empty-bag: {} inr: inr x  decide: case b of inl(x) =s[x] | inr(y) =t[y] so_lambda: x y.t[x; y] it: pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B df-program-meaning: df-program-meaning(dfp) null-df-program: null-df-program(B) null-dataflow: null-dataflow() member: t  T axiom: Ax universe: Type dataflow: dataflow(A;B) equal: s = t all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  true: True lambda: x.A[x] RepUR: Error :RepUR,  BHyp: Error :BHyp,  unit: Unit union: left + right bag: bag(T) parameter: parm{i} CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic
Lemmas :  bag_wf unit_wf it_wf empty-bag_wf rec-dataflow-equal2 dataflow_wf true_wf pi1_wf_top member_wf

\mforall{}[A:\mBbbU{}'].  \mforall{}[B:Type].    (df-program-meaning(null-df-program(B))  =  null-dataflow())


Date html generated: 2011_08_16-AM-09_48_31
Last ObjectModification: 2011_06_18-AM-08_35_11

Home Index