{ [A,S:Type]. [F:S  A  (S  Top)]. [G:Top]. [as:A List]. [s:S].
    (data-stream(better-parallel-dataflow(
                 1;k.[rec-dataflow(s;s,a.F[s;a])][k];
                 g.G[g 0]);as) 
    ~ data-stream(rec-dataflow(s;s,a.let s',out = F[s;a] 
                                     in <s', G[out]>);as)) }

{ Proof }



Definitions occuring in Statement :  better-parallel-dataflow: better-parallel-dataflow data-stream: data-stream(P;L) rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) select: l[i] uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] apply: f a lambda: x.A[x] function: x:A  B[x] spread: spread def pair: <a, b> product: x:A  B[x] cons: [car / cdr] nil: [] list: type List natural_number: $n universe: Type sqequal: s ~ t
Definitions :  uall: [x:A]. B[x] top: Top member: t  T all: x:A. B[x] subtype: S  T better-parallel-dataflow: better-parallel-dataflow select: l[i] so_apply: x[s1;s2] pi2: snd(t) dataflow-ap: df(a) eval-parallel-dataflow: eval-parallel-dataflow(n;s;m) primrec: primrec(n;b;c) select-tuple: select-tuple ycomb: Y ifthenelse: if b then t else f fi  eq_int: (i = j) btrue: tt bfalse: ff le_int: i z j bnot: b lt_int: i <z j implies: P  Q pi1: fst(t) rec-dataflow: rec-dataflow(s0;s,m.next[s; m])
Lemmas :  top_wf data-stream-cons pi1_wf_top

\mforall{}[A,S:Type].  \mforall{}[F:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  Top)].  \mforall{}[G:Top].  \mforall{}[as:A  List].  \mforall{}[s:S].
    (data-stream(better-parallel-dataflow(
                              1;\mlambda{}k.[rec-dataflow(s;s,a.F[s;a])][k];
                              \mlambda{}g.G[g  0]);as)  \msim{}  data-stream(rec-dataflow(s;s,a.let  s',out  =  F[s;a] 
                                                                                                                              in  <s',  G[out]>);as))


Date html generated: 2011_08_10-AM-08_16_00
Last ObjectModification: 2011_06_18-AM-08_30_47

Home Index