{ Pi_term  Type }

{ Proof }



Definitions occuring in Statement :  pi_term: Pi_term member: t  T universe: Type
Definitions :  universe: Type member: t  T equal: s = t unit: Unit subtype_rel: A r B product: x:A  B[x] union: left + right tag-by: zT or: P  Q function: x:A  B[x] implies: P  Q rev_implies: P  Q and: P  Q iff: P  Q all: x:A. B[x] ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record: record(x.T[x]) isect2: T1  T2 record+: record+ eclass: EClass(A[eo; e]) fset: FSet{T} isect: x:A. B[x] b-union: A  B list: type List set: {x:A| B[x]}  top: Top true: True name: Name pi_prefix: pi_prefix() type-monotone: Monotone(T.F[T]) so_lambda: x.t[x] rec: rec(x.A[x]) pi_term: Pi_term
Lemmas :  type-monotone_wf pi_prefix_wf subtype_rel_sum subtype_rel_simple_product name_wf subtype_rel_wf unit_wf

Pi\_term  \mmember{}  Type


Date html generated: 2011_08_17-PM-06_41_37
Last ObjectModification: 2010_09_24-PM-03_23_47

Home Index