{ 
[M:Type 
 Type]
    EquivRel(Process(T.M[T]);P,Q.P
Q) supposing Continuous+(T.M[T]) }
{ Proof }
Definitions occuring in Statement : 
process-equiv: process-equiv, 
Process: Process(P.M[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
function: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_apply: x[s], 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
process-equiv: process-equiv, 
member: t 
 T, 
and: P 
 Q, 
refl: Refl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
all:
x:A. B[x], 
so_lambda: 
x.t[x], 
implies: P 
 Q, 
prop:
, 
guard: {T}
Lemmas : 
Process-stream_wf, 
pMsg_wf, 
Process_wf, 
process-equiv_wf, 
strong-type-continuous_wf, 
pExt_wf
\mforall{}[M:Type  {}\mrightarrow{}  Type].  EquivRel(Process(T.M[T]);P,Q.P\mequiv{}Q)  supposing  Continuous+(T.M[T])
Date html generated:
2011_08_16-PM-06_49_50
Last ObjectModification:
2011_06_18-AM-11_04_20
Home
Index