{ [M:Type  Type]
    EquivRel(Process(T.M[T]);P,Q.PQ) supposing Continuous+(T.M[T]) }

{ Proof }



Definitions occuring in Statement :  process-equiv: process-equiv Process: Process(P.M[P]) strong-type-continuous: Continuous+(T.F[T]) equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s] equiv_rel: EquivRel(T;x,y.E[x; y]) process-equiv: process-equiv member: t  T and: P  Q refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] so_lambda: x.t[x] implies: P  Q prop: guard: {T}
Lemmas :  Process-stream_wf pMsg_wf Process_wf process-equiv_wf strong-type-continuous_wf pExt_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type].  EquivRel(Process(T.M[T]);P,Q.P\mequiv{}Q)  supposing  Continuous+(T.M[T])


Date html generated: 2011_08_16-PM-06_49_50
Last ObjectModification: 2011_06_18-AM-11_04_20

Home Index