{ [M,E:Type  Type].
    [P:process(P.M[P];P.E[P])]. has-value(P) supposing M[Top] }

{ Proof }



Definitions occuring in Statement :  process: process(P.M[P];P.E[P]) uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A  B[x] universe: Type has-value: has-value(a)
Definitions :  valueall-type: valueall-type(T) process: process(P.M[P];P.E[P]) so_apply: x[s] equal: s = t member: t  T natural_number: $n callbyvalue: callbyvalue int: axiom: Ax has-value: has-value(a) isect: x:A. B[x] so_lambda: x.t[x] uall: [x:A]. B[x] apply: f a uimplies: b supposing a function: x:A  B[x] universe: Type all: x:A. B[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] less_than: a < b not: A ge: i  j  le: A  B corec: corec(T.F[T]) strong-subtype: strong-subtype(A;B) lambda: x.A[x] top: Top primrec: primrec(n;b;c) list: type List implies: P  Q union: left + right b-union: A  B tunion: x:A.B[x] set: {x:A| B[x]}  quotient: x,y:A//B[x; y] rec: rec(x.A[x]) atom: Atom atom: Atom$n value-type: value-type(T)
Lemmas :  valueall-type-value-type value-type_wf process-valueall-type valueall-type_wf top_wf process_wf

\mforall{}[M,E:Type  {}\mrightarrow{}  Type].    \mforall{}[P:process(P.M[P];P.E[P])].  has-value(P)  supposing  M[Top]


Date html generated: 2011_08_16-AM-09_53_27
Last ObjectModification: 2011_06_18-AM-08_35_44

Home Index