{ PropRule  ' }

{ Proof }



Definitions occuring in Statement :  prop-rule: PropRule member: t  T universe: Type
Definitions :  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  universe: Type prop-rule: PropRule name: Name prop: assert: b apply: f a list: type List not: A false: False void: Void less_than: a < b length: ||as|| strong-subtype: strong-subtype(A;B) ge: i  j  le: A  B cdv-types: cdv-types(dv) bool: exists: x:A. B[x] product: x:A  B[x] classderiv: ClassDerivation rec: rec(x.A[x]) Id: Id atom: Atom$n hd: hd(l) list_ind: list_ind def intensional-universe: IType set: {x:A| B[x]}  es-E-interface: E(X) implies: P  Q eclass: EClass(A[eo; e]) subtype: S  T all: x:A. B[x] function: x:A  B[x] equal: s = t fpf: a:A fp-B[a] limited-type: LimitedType subtype_rel: A r B member: t  T
Lemmas :  subtype_rel_wf limited-type_wf member_wf intensional-universe_wf Id_wf cdv-types_wf hd_wf assert_wf bool_wf name_wf classderiv_wf cdv-types-non-empty

PropRule  \mmember{}  \mBbbU{}'


Date html generated: 2010_08_30-AM-12_56_47
Last ObjectModification: 2010_08_23-PM-01_15_14

Home Index