{ [A,B,S:Type]. [s0:S]. [nxt:S  A  (S  bag(B))].
    (rec-dataflow-halt-state(A;B;s0;s,a.nxt[s;a])  ) }

{ Proof }



Definitions occuring in Statement :  rec-dataflow-halt-state: rec-dataflow-halt-state(A;B;s0;s,a.next[s; a]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t  T function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  so_lambda: x.t[x] lambda: x.A[x] let: let implies: P  Q fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B empty-bag: Error :empty-bag,  so_lambda: x y.t[x; y] rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) iterate-dataflow: P*(inputs) dataflow-ap: df(a) pi2: snd(t) limited-type: LimitedType list: type List all: x:A. B[x] axiom: Ax apply: f a so_apply: x[s1;s2] rec-dataflow-halt-state: rec-dataflow-halt-state(A;B;s0;s,a.next[s; a]) prop: universe: Type uall: [x:A]. B[x] product: x:A  B[x] function: x:A  B[x] isect: x:A. B[x] member: t  T equal: s = t Auto: Error :Auto,  bag: Error :bag,  dataflow: dataflow(A;B) CollapseTHEN: Error :CollapseTHEN
Lemmas :  Error :bag_wf,  member_wf Error :empty-bag_wf,  dataflow_wf iterate-dataflow_wf rec-dataflow_wf dataflow-ap_wf pi2_wf

\mforall{}[A,B,S:Type].  \mforall{}[s0:S].  \mforall{}[nxt:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  bag(B))].
    (rec-dataflow-halt-state(A;B;s0;s,a.nxt[s;a])  \mmember{}  \mBbbP{})


Date html generated: 2011_08_10-AM-08_20_00
Last ObjectModification: 2011_03_22-PM-01_40_41

Home Index