{ [S,A,B:Type  Type].
    (let Proc = corec(P.A[P]  (P  B[P])) in
         s0:S[Proc]. next:T:{T:Type| Proc r T} 
                              (S[A[T]  (T  B[T])]  A[T]  (S[T]  B[T])).
           (rec-dataflow(s0;s,m.next[s;m])  Proc)) supposing 
       (Continuous+(T.B[T]) and 
       Continuous+(T.A[T]) and 
       Continuous+(T.S[T])) }

{ Proof }



Definitions occuring in Statement :  rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) strong-type-continuous: Continuous+(T.F[T]) subtype_rel: A r B let: let uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] member: t  T set: {x:A| B[x]}  isect: x:A. B[x] function: x:A  B[x] product: x:A  B[x] universe: Type corec: corec(T.F[T])
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] let: let all: x:A. B[x] member: t  T rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) so_apply: x[s1;s2] ext-eq: A  B and: P  Q isect2: T1  T2 top: Top so_lambda: x.t[x] ifthenelse: if b then t else f fi  btrue: tt bfalse: ff implies: P  Q bool: unit: Unit it: prop:
Lemmas :  nat_wf ycomb_wf_corec_parameter3 top_wf bool_wf corec_wf strong-type-continuous_wf

\mforall{}[S,A,B:Type  {}\mrightarrow{}  Type].
    (let  Proc  =  corec(P.A[P]  {}\mrightarrow{}  (P  \mtimes{}  B[P]))  in
              \mforall{}s0:S[Proc].  \mforall{}next:\mcap{}T:\{T:Type|  Proc  \msubseteq{}r  T\}  .  (S[A[T]  {}\mrightarrow{}  (T  \mtimes{}  B[T])]  {}\mrightarrow{}  A[T]  {}\mrightarrow{}  (S[T]  \mtimes{}  B[T])).
                  (rec-dataflow(s0;s,m.next[s;m])  \mmember{}  Proc))  supposing 
          (Continuous+(T.B[T])  and 
          Continuous+(T.A[T])  and 
          Continuous+(T.S[T]))


Date html generated: 2011_08_10-AM-08_14_00
Last ObjectModification: 2011_06_18-AM-08_29_41

Home Index