{ [S:Type]. [s0:S]. [n:]. [M:Type  Type].
  [next:m:
           (S
            M[m:  if n z m then Top else lvprocess(lp.M[lp];m) fi ]
            (S  ((Id  M[m:n  lvprocess(lp.M[lp];m)]) List)))].
    (RecProcess(s0;s,m.next[s;m])  lvprocess(lp.M[lp];n)) }

{ Proof }



Definitions occuring in Statement :  lvprocess: lvprocess(lp.M[lp];n) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id le_int: i z j ifthenelse: if b then t else f fi  int_seg: {i..j} nat: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] member: t  T isect: x:A. B[x] function: x:A  B[x] product: x:A  B[x] list: type List natural_number: $n universe: Type
Definitions :  prop: lelt: i  j < k rationals: natural_number: $n int_seg: {i..j} lambda: x.A[x] top: Top real: grp_car: |g| subtype: S  T le_int: i z j ifthenelse: if b then t else f fi  eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B implies: P  Q false: False not: A le: A  B int: set: {x:A| B[x]}  so_lambda: x.t[x] so_lambda: x y.t[x; y] process: process(P.M[P];P.E[P]) Process: Process(P.M[P]) uimplies: b supposing a all: x:A. B[x] axiom: Ax so_apply: x[s1;s2] rec-process: RecProcess(s0;s,m.next[s; m]) lvprocess: lvprocess(lp.M[lp];n) equal: s = t universe: Type uall: [x:A]. B[x] member: t  T isect: x:A. B[x] function: x:A  B[x] list: type List product: x:A  B[x] Id: Id so_apply: x[s] apply: f a nat: Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) let: let Auto: Error :Auto,  Try: Error :Try
Lemmas :  rec-dataflow_wf member_wf ifthenelse_wf le_int_wf top_wf Id_wf int_seg_wf lvprocess_wf le_wf nat_wf

\mforall{}[S:Type].  \mforall{}[s0:S].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Type  {}\mrightarrow{}  Type].
\mforall{}[next:\mcap{}m:\mBbbN{}
                  (S
                  {}\mrightarrow{}  M[m:\mBbbN{}  \mtimes{}  if  n  \mleq{}z  m  then  Top  else  lvprocess(lp.M[lp];m)  fi  ]
                  {}\mrightarrow{}  (S  \mtimes{}  ((Id  \mtimes{}  M[m:\mBbbN{}n  \mtimes{}  lvprocess(lp.M[lp];m)])  List)))].
    (RecProcess(s0;s,m.next[s;m])  \mmember{}  lvprocess(lp.M[lp];n))


Date html generated: 2011_08_17-PM-06_39_02
Last ObjectModification: 2011_06_18-PM-12_04_49

Home Index