{ [S:Type  Type]
    [s0:S[pi-process()]]. [next:T:{T:Type| pi-process() r T} 
                                    (S[piM(T)  (T  LabeledDAG(Id
                                                       (Com(T.piM(T)) T)))]
                                     piM(T)
                                     (S[T]  LabeledDAG(Id
                                                (Com(T.piM(T)) T))))].
      (RecProcess(s0;s,m.next[s;m])  pi-process()) 
    supposing Continuous+(T.S[T]) }

{ Proof }



Definitions occuring in Statement :  pi-process: pi-process() piM: piM(T) Com: Com(P.M[P]) ldag: LabeledDAG(T) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id strong-type-continuous: Continuous+(T.F[T]) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t  T set: {x:A| B[x]}  apply: f a isect: x:A. B[x] function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s] pi-process: pi-process() member: t  T so_apply: x[s1;s2] so_lambda: x.t[x] so_lambda: x y.t[x; y] all: x:A. B[x] implies: P  Q piM: piM(T) prop:
Lemmas :  rec-process_wf_Process piM_wf ldag_wf Id_wf Com_wf Process_wf strong-type-continuous_wf continuous-constant PiDataVal_wf

\mforall{}[S:Type  {}\mrightarrow{}  Type]
    \mforall{}[s0:S[pi-process()]].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                                    (S[piM(T)  {}\mrightarrow{}  (T  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T)))]
                                                                    {}\mrightarrow{}  piM(T)
                                                                    {}\mrightarrow{}  (S[T]  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
        (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process()) 
    supposing  Continuous+(T.S[T])


Date html generated: 2011_08_17-PM-06_57_57
Last ObjectModification: 2011_06_18-PM-12_36_39

Home Index