Nuprl Lemma : sm-do-ops_wf

[S,Op,R:Type]. [s:S]. [f:S  Op  (S  R)]. [L:Op List].  (sm-do-ops(s;f;L)  S  (R List))


Proof not projected




Definitions occuring in Statement :  sm-do-ops: sm-do-ops(s;f;L) uall: [x:A]. B[x] member: t  T function: x:A  B[x] product: x:A  B[x] list: type List universe: Type
Definitions :  cons: [car / cdr] append: as @ bs apply: f a spread: spread def nil: [] pair: <a, b> lambda: x.A[x] so_lambda: x y.t[x; y] all: x:A. B[x] list_accum: list_accum(x,a.f[x; a];y;l) axiom: Ax sm-do-ops: sm-do-ops(s;f;L) equal: s = t universe: Type product: x:A  B[x] function: x:A  B[x] uall: [x:A]. B[x] member: t  T list: type List isect: x:A. B[x]
Lemmas :  list_accum_wf append_wf

\mforall{}[S,Op,R:Type].  \mforall{}[s:S].  \mforall{}[f:S  {}\mrightarrow{}  Op  {}\mrightarrow{}  (S  \mtimes{}  R)].  \mforall{}[L:Op  List].    (sm-do-ops(s;f;L)  \mmember{}  S  \mtimes{}  (R  List))


Date html generated: 2011_10_20-PM-04_08_46
Last ObjectModification: 2011_01_24-PM-05_10_50

Home Index