{ ... }

{ Proof }



Definitions occuring in Statement :  std-initial: std-initial(S) run-initialization: run-initialization(r;G) pRunType: pRunType(T.M[T]) System: System(P.M[P]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) function: x:A  B[x] universe: Type
Definitions :  implies: P  Q real: grp_car: |g| intensional-universe: IType fpf: a:A fp-B[a] subtype: S  T es-E-interface: E(X) eclass: EClass(A[eo; e]) nat: lg-size: lg-size(g) natural_number: $n lg-label: lg-label(g;x) pi1: fst(t) component: component(P.M[P]) pInTransit: pInTransit(P.M[P]) is-dag: is-dag(g) labeled-graph: LabeledGraph(T) top: Top union: left + right strong-subtype: strong-subtype(A;B) set: {x:A| B[x]}  le: A  B ge: i  j  not: A and: P  Q uiff: uiff(P;Q) subtype_rel: A r B pi2: snd(t) axiom: Ax runEvents: runEvents(r) int_seg: {i..j} less_than: a < b run-initialization: run-initialization(r;G) pair: <a, b> int: lg-all: xG.P[x] pRunType: pRunType(T.M[T]) ldag: LabeledDAG(T) list: type List product: x:A  B[x] prop: std-initial: std-initial(S) uimplies: b supposing a apply: f a so_apply: x[s] lambda: x.A[x] isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] universe: Type equal: s = t function: x:A  B[x] member: t  T System: System(P.M[P]) all: x:A. B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  minus: -n decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b false: False lelt: i  j < k D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto
Lemmas :  pi2_wf component_wf ldag_wf int_seg_wf runEvents_wf run-initialization_wf pRunType_wf std-initial_wf System_wf member_wf lg-size_wf nat_wf subtype_rel_wf intensional-universe_wf pInTransit_wf lg-size_wf_dag

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[S:System(P.M[P])].
    \mforall{}[r:pRunType(P.M[P])].  run-initialization(r;snd(S))  supposing  std-initial(S)


Date html generated: 2011_08_17-PM-03_40_32
Last ObjectModification: 2011_06_18-AM-11_22_07

Home Index