{ [M:Type  Type]
    [S1,S2:System(P.M[P])].  S1 = S2 supposing system-equiv(P.M[P];S1;S2) 
    supposing Continuous+(P.M[P]) }

{ Proof }



Definitions occuring in Statement :  system-equiv: system-equiv(T.M[T];S1;S2) System: System(P.M[P]) pInTransit: pInTransit(P.M[P]) ldag: LabeledDAG(T) strong-type-continuous: Continuous+(T.F[T]) uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A  B[x] product: x:A  B[x] universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s] top: Top member: t  T so_lambda: x.t[x] System: System(P.M[P]) system-equiv: system-equiv(T.M[T];S1;S2) and: P  Q prop:
Lemmas :  equal-top system-equiv_wf System_wf strong-type-continuous_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S1,S2:System(P.M[P])].    S1  =  S2  supposing  system-equiv(P.M[P];S1;S2) 
    supposing  Continuous+(P.M[P])


Date html generated: 2011_08_16-PM-06_51_38
Last ObjectModification: 2011_06_18-AM-11_06_20

Home Index