{ y:. (w:{| (w = ((3 * y) * (y + (3 * y))))}) }

{ Proof }



Definitions occuring in Statement :  all: x:A. B[x] sq_exists: x:{A| B[x]} multiply: n * m add: n + m natural_number: $n int: equal: s = t
Definitions :  member: t  T strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) equal: s = t int: function: x:A  B[x] uall: [x:A]. B[x] isect: x:A. B[x] subtype_rel: A r B sq_exists: x:{A| B[x]} set: {x:A| B[x]}  all: x:A. B[x] bool: prop: limited-type: LimitedType lambda: x.A[x] universe: Type value-type: value-type(T) so_lambda: x.t[x] MaAuto: Error :MaAuto,  natural_number: $n multiply: n * m CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  add: n + m CollapseTHEN: Error :CollapseTHEN
Lemmas :  set-value-type value-type_wf int-value-type

\mforall{}y:\mBbbZ{}.  (\mexists{}w:\{\mBbbZ{}|  (w  =  ((3  *  y)  *  (y  +  (3  *  y))))\})


Date html generated: 2011_08_17-PM-05_57_17
Last ObjectModification: 2011_02_03-PM-04_22_14

Home Index