{ 
A:Id List. 
W:{a:Id| (a 
 A)}  List List.
    (three-intersection(A;W) 
 two-intersection(A;W)) }
{ Proof }
Definitions occuring in Statement : 
three-intersection: three-intersection(A;W), 
two-intersection: two-intersection(A;W), 
Id: Id, 
all:
x:A. B[x], 
implies: P 
 Q, 
set: {x:A| B[x]} , 
list: type List, 
l_member: (x 
 l)
Definitions : 
all:
x:A. B[x], 
implies: P 
 Q, 
two-intersection: two-intersection(A;W), 
l_all: (
x
L.P[x]), 
exists:
x:A. B[x], 
and: P 
 Q, 
member: t 
 T, 
prop:
, 
cand: A c
 B, 
three-intersection: three-intersection(A;W)
Lemmas : 
l_member_wf, 
three-intersection_wf, 
Id_wf
\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.    (three-intersection(A;W)  {}\mRightarrow{}  two-intersection(A;W))
Date html generated:
2010_08_27-AM-12_50_11
Last ObjectModification:
2009_12_23-PM-03_26_36
Home
Index