Nuprl Lemma : bm_compare_refl_eq

[K:Type]. ∀[compare:bm_compare(K)]. ∀[k:K].  ((compare k) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  bm_compare: bm_compare(K) uall: [x:A]. B[x] apply: a natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  bm_compare_wf
\mforall{}[K:Type].  \mforall{}[compare:bm\_compare(K)].  \mforall{}[k:K].    ((compare  k  k)  =  0)



Date html generated: 2015_07_17-AM-08_19_30
Last ObjectModification: 2015_01_27-PM-00_36_47

Home Index