Nuprl Lemma : bm_compare_sym_eq

[K:Type]. ∀[compare:bm_compare(K)]. ∀[k1,k2:K].  (((compare k1 k2) 0 ∈ ℤ ((compare k2 k1) 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  bm_compare: bm_compare(K) uall: [x:A]. B[x] implies:  Q apply: a natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  equal-wf-T-base bm_compare_wf
\mforall{}[K:Type].  \mforall{}[compare:bm\_compare(K)].  \mforall{}[k1,k2:K].    (((compare  k1  k2)  =  0)  {}\mRightarrow{}  ((compare  k2  k1)  =  0))



Date html generated: 2015_07_17-AM-08_19_31
Last ObjectModification: 2015_01_27-PM-00_36_48

Home Index