Nuprl Lemma : bm_exists_wf
∀[T,Key:Type]. ∀[m:binary-map(T;Key)]. ∀[p:T ─→ 𝔹].  (bm_exists(m;p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bm_exists: bm_exists(m;p)
, 
binary-map: binary-map(T;Key)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
binary_map_ind_wf_simple, 
bool_wf, 
bfalse_wf, 
bor_wf, 
binary_map_wf, 
binary-map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    (bm\_exists(m;p)  \mmember{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_19_55
Last ObjectModification:
2015_01_27-PM-00_36_37
Home
Index