Nuprl Lemma : bm_insert'_wf

[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[p:Key × T]. ∀[m:binary-map(T;Key)].
  (bm_insert'(compare;p;m) ∈ binary-map(T;Key))


Proof




Definitions occuring in Statement :  bm_insert': bm_insert'(compare;p;m) bm_compare: bm_compare(K) binary-map: binary-map(T;Key) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Lemmas :  bm_insert_wf binary-map_wf bm_compare_wf
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[p:Key  \mtimes{}  T].  \mforall{}[m:binary-map(T;Key)].
    (bm\_insert'(compare;p;m)  \mmember{}  binary-map(T;Key))



Date html generated: 2015_07_17-AM-08_19_42
Last ObjectModification: 2015_01_27-PM-00_36_29

Home Index