Nuprl Lemma : bm_insert'_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[p:Key × T]. ∀[m:binary-map(T;Key)].
  (bm_insert'(compare;p;m) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement : 
bm_insert': bm_insert'(compare;p;m)
, 
bm_compare: bm_compare(K)
, 
binary-map: binary-map(T;Key)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
bm_insert_wf, 
binary-map_wf, 
bm_compare_wf
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[p:Key  \mtimes{}  T].  \mforall{}[m:binary-map(T;Key)].
    (bm\_insert'(compare;p;m)  \mmember{}  binary-map(T;Key))
Date html generated:
2015_07_17-AM-08_19_42
Last ObjectModification:
2015_01_27-PM-00_36_29
Home
Index