Nuprl Definition : comem

comem{i:l}(x;s) ==  ∃t:set-dom(s). (x set-item(s;t) ∈ coSet{i:l})



Definitions occuring in Statement :  set-item: set-item(s;x) set-dom: set-dom(s) coSet: coSet{i:l} exists: x:A. B[x] equal: t ∈ T
Definitions occuring in definition :  set-item: set-item(s;x) coSet: coSet{i:l} equal: t ∈ T set-dom: set-dom(s) exists: x:A. B[x]
FDL editor aliases :  comem

Latex:
comem\{i:l\}(x;s)  ==    \mexists{}t:set-dom(s).  (x  =  set-item(s;t))



Date html generated: 2018_07_29-AM-09_50_09
Last ObjectModification: 2018_07_11-PM-10_40_42

Theory : constructive!set!theory


Home Index