Nuprl Definition : A-open-box

A-open-box(X;A;I;alpha;J;x;i) ==
  {L:A-face(X;A;I;alpha) List| 
   A-adjacent-compatible(X;A;I;alpha;L)
   ∧ (x ∈ J))
   ∧ l_subset(Cname;J;I)
   ∧ ((∀y:nameset(J). ∀c:ℕ2.  (∃f∈L. A-face-name(f) = <y, c> ∈ (nameset(I) × ℕ2)))
     ∧ (∃f∈L. A-face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
     ∧ (∀f∈L.¬(A-face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))))
   ∧ (∀f∈L.(fst(f) ∈ [x J]))
   ∧ (∀f1,f2∈L.  ¬(A-face-name(f1) A-face-name(f2) ∈ (nameset(I) × ℕ2)))} 



Definitions occuring in Statement :  A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) A-face-name: A-face-name(f) A-face: A-face(X;A;I;alpha) nameset: nameset(L) coordinate_name: Cname pairwise: (∀x,y∈L.  P[x; y]) l_subset: l_subset(T;as;bs) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) cons: [a b] list: List int_seg: {i..j-} pi1: fst(t) all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  list: List A-face: A-face(X;A;I;alpha) A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) l_subset: l_subset(T;as;bs) all: x:A. B[x] l_exists: (∃x∈L. P[x]) pair: <a, b> subtract: m and: P ∧ Q l_all: (∀x∈L.P[x]) l_member: (x ∈ l) pi1: fst(t) cons: [a b] coordinate_name: Cname pairwise: (∀x,y∈L.  P[x; y]) not: ¬A equal: t ∈ T product: x:A × B[x] nameset: nameset(L) int_seg: {i..j-} natural_number: $n A-face-name: A-face-name(f)
FDL editor aliases :  A-open-box

Latex:
A-open-box(X;A;I;alpha;J;x;i)  ==
    \{L:A-face(X;A;I;alpha)  List| 
      A-adjacent-compatible(X;A;I;alpha;L)
      \mwedge{}  (\mneg{}(x  \mmember{}  J))
      \mwedge{}  l\_subset(Cname;J;I)
      \mwedge{}  ((\mforall{}y:nameset(J).  \mforall{}c:\mBbbN{}2.    (\mexists{}f\mmember{}L.  A-face-name(f)  =  <y,  c>))
          \mwedge{}  (\mexists{}f\mmember{}L.  A-face-name(f)  =  <x,  i>)
          \mwedge{}  (\mforall{}f\mmember{}L.\mneg{}(A-face-name(f)  =  <x,  1  -  i>)))
      \mwedge{}  (\mforall{}f\mmember{}L.(fst(f)  \mmember{}  [x  /  J]))
      \mwedge{}  (\mforall{}f1,f2\mmember{}L.    \mneg{}(A-face-name(f1)  =  A-face-name(f2)))\} 



Date html generated: 2016_06_16-PM-05_56_16
Last ObjectModification: 2015_09_23-AM-09_31_47

Theory : cubical!sets


Home Index