Nuprl Definition : cu-box-in-box
cu-box-in-box(I;box) ==
  {u:i:ℕ||box|| ⟶ cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)| 
   ∀i,j:ℕ||box||.
     ((¬(dimension(box[i]) = dimension(box[j]) ∈ Cname))
     
⇒ (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]); dimension(box[j])];
                             (dimension(box[j]):=direction(box[j]));1;u i)
        = cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]); dimension(box[i])];
                              (dimension(box[i]):=direction(box[i]));1;u j)
        ∈ cu-cube-family(cube(box[i]);I-[dimension(box[i]);
                                         dimension(box[j])];(1 o (dimension(box[j]):=direction(box[j]))))))} 
Definitions occuring in Statement : 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
face-cube: cube(f)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
name-comp: (f o g)
, 
face-map: (x:=i)
, 
id-morph: 1
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions occuring in definition : 
face-dimension: dimension(f)
, 
cons: [a / b]
, 
cname_deq: CnameDeq
, 
list-diff: as-bs
, 
select: L[n]
, 
face-cube: cube(f)
, 
cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T)
, 
apply: f a
, 
nil: []
, 
id-morph: 1
, 
face-direction: direction(f)
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
equal: s = t ∈ T
, 
coordinate_name: Cname
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
length: ||as||
, 
natural_number: $n
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
set: {x:A| B[x]} 
FDL editor aliases : 
cu-box-in-box
cu-box-in-box
Latex:
cu-box-in-box(I;box)  ==
    \{u:i:\mBbbN{}||box||  {}\mrightarrow{}  cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)| 
      \mforall{}i,j:\mBbbN{}||box||.
          ((\mneg{}(dimension(box[i])  =  dimension(box[j])))
          {}\mRightarrow{}  (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]);
                                                                                                                                      dimension(box[j])];
                                                          (dimension(box[j]):=direction(box[j]));1;u  i)
                =  cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]);
                                                                                                                                        dimension(box[i])];
                                                            (dimension(box[i]):=direction(box[i]));1;u  j)))\} 
Date html generated:
2016_06_16-PM-08_08_24
Last ObjectModification:
2015_09_23-AM-09_35_13
Theory : cubical!sets
Home
Index