Nuprl Definition : cu-box-in-box

cu-box-in-box(I;box) ==
  {u:i:ℕ||box|| ⟶ cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)| 
   ∀i,j:ℕ||box||.
     ((¬(dimension(box[i]) dimension(box[j]) ∈ Cname))
      (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]); dimension(box[j])];
                             (dimension(box[j]):=direction(box[j]));1;u i)
        cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]); dimension(box[i])];
                              (dimension(box[i]):=direction(box[i]));1;u j)
        ∈ cu-cube-family(cube(box[i]);I-[dimension(box[i]);
                                         dimension(box[j])];(1 (dimension(box[j]):=direction(box[j]))))))} 



Definitions occuring in Statement :  cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) cu-cube-family: cu-cube-family(alpha;L;f) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) name-comp: (f g) face-map: (x:=i) id-morph: 1 cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs select: L[n] length: ||as|| cons: [a b] nil: [] int_seg: {i..j-} all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  face-dimension: dimension(f) cons: [a b] cname_deq: CnameDeq list-diff: as-bs select: L[n] face-cube: cube(f) cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) apply: a nil: [] id-morph: 1 face-direction: direction(f) face-map: (x:=i) name-comp: (f g) cu-cube-family: cu-cube-family(alpha;L;f) equal: t ∈ T coordinate_name: Cname not: ¬A implies:  Q length: ||as|| natural_number: $n int_seg: {i..j-} all: x:A. B[x] function: x:A ⟶ B[x] set: {x:A| B[x]} 
FDL editor aliases :  cu-box-in-box cu-box-in-box

Latex:
cu-box-in-box(I;box)  ==
    \{u:i:\mBbbN{}||box||  {}\mrightarrow{}  cu-cube-family(cube(box[i]);I-[dimension(box[i])];1)| 
      \mforall{}i,j:\mBbbN{}||box||.
          ((\mneg{}(dimension(box[i])  =  dimension(box[j])))
          {}\mRightarrow{}  (cu-cube-restriction(cube(box[i]);I-[dimension(box[i])];I-[dimension(box[i]);
                                                                                                                                      dimension(box[j])];
                                                          (dimension(box[j]):=direction(box[j]));1;u  i)
                =  cu-cube-restriction(cube(box[j]);I-[dimension(box[j])];I-[dimension(box[j]);
                                                                                                                                        dimension(box[i])];
                                                            (dimension(box[i]):=direction(box[i]));1;u  j)))\} 



Date html generated: 2016_06_16-PM-08_08_24
Last ObjectModification: 2015_09_23-AM-09_35_13

Theory : cubical!sets


Home Index