Nuprl Definition : cube-context-adjoin

X.A ==  <λI.(alpha:X(I) × A(alpha)), λI,J,f,p. <f(fst(p)), (snd(p) fst(p) f)>>



Wellformedness Lemmas :  cube-context-adjoin_wf
Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cube-set-restriction: f(s) I-cube: X(I) pi1: fst(t) pi2: snd(t) lambda: λx.A[x] pair: <a, b> product: x:A × B[x]
Definitions occuring in definition :  product: x:A × B[x] I-cube: X(I) cubical-type-at: A(a) lambda: λx.A[x] pair: <a, b> cube-set-restriction: f(s) cubical-type-ap-morph: (u f) pi1: fst(t) pi2: snd(t)
FDL editor aliases :  cube-context-adjoin cube-context-adjoin

Latex:
X.A  ==    <\mlambda{}I.(alpha:X(I)  \mtimes{}  A(alpha)),  \mlambda{}I,J,f,p.  <f(fst(p)),  (snd(p)  fst(p)  f)>>



Date html generated: 2016_06_16-PM-05_40_39
Last ObjectModification: 2015_09_23-AM-09_30_25

Theory : cubical!sets


Home Index