Nuprl Definition : name-morph

name-morph(I;J) ==
  {f:nameset(I) ⟶ extd-nameset(J)| 
   ∀i,j:nameset(I).  ((↑isname(f i))  (↑isname(f j))  ((f i) (f j) ∈ extd-nameset(J))  (i j ∈ nameset(I)))} 



Definitions occuring in Statement :  isname: isname(z) extd-nameset: extd-nameset(L) nameset: nameset(L) assert: b all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] all: x:A. B[x] assert: b isname: isname(z) implies:  Q extd-nameset: extd-nameset(L) apply: a equal: t ∈ T nameset: nameset(L)
FDL editor aliases :  name-morph

Latex:
name-morph(I;J)  ==
    \{f:nameset(I)  {}\mrightarrow{}  extd-nameset(J)| 
      \mforall{}i,j:nameset(I).    ((\muparrow{}isname(f  i))  {}\mRightarrow{}  (\muparrow{}isname(f  j))  {}\mRightarrow{}  ((f  i)  =  (f  j))  {}\mRightarrow{}  (i  =  j))\} 



Date html generated: 2016_05_20-AM-09_29_30
Last ObjectModification: 2015_09_23-AM-09_29_28

Theory : cubical!sets


Home Index