Nuprl Definition : comp-path
comp-path(G;cA;a;pth_a_b;pth_b_c) ==
  <>(comp ((cA)p)p [((q=0) ∨ (q=1)) ⟶ ((path-eta(refl(a)))p+ ∨ (path-eta(pth_b_c))p+)] path-eta(pth_a_b))
Definitions occuring in Statement : 
comp_term: comp cA [phi ⟶ u] a0
, 
csm-comp-structure: (cA)tau
, 
cubical-refl: refl(a)
, 
term-to-path: <>(a)
, 
path-eta: path-eta(pth)
, 
case-term: (u ∨ v)
, 
face-zero: (i=0)
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
Definitions occuring in definition : 
path-eta: path-eta(pth)
, 
cc-fst: p
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
csm+: tau+
, 
csm-ap-term: (t)s
, 
cubical-refl: refl(a)
, 
cc-snd: q
, 
face-zero: (i=0)
, 
case-term: (u ∨ v)
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
csm-comp-structure: (cA)tau
, 
comp_term: comp cA [phi ⟶ u] a0
, 
term-to-path: <>(a)
FDL editor aliases : 
comp-path
Latex:
comp-path(G;cA;a;pth\_a$_{b}$;pth\_b$_{c}$)  ==
    <>(comp  ((cA)p)p  [((q=0)  \mvee{}  (q=1))  \mvdash{}\mrightarrow{}  ((path-eta(refl(a)))p+  \mvee{}  (path-eta(pth\_b$_{c}\000C$))p+)]
                  path-eta(pth\_a$_{b}$))
Date html generated:
2017_01_10-AM-09_52_45
Last ObjectModification:
2017_01_06-PM-01_30_45
Theory : cubical!type!theory
Home
Index