Nuprl Definition : composition-uniformity

composition-uniformity(Gamma;A;comp) ==
  ∀I,J:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀j:{j:ℕ| ¬j ∈ J} . ∀g:J ⟶ I. ∀rho:Gamma(I+i). ∀phi:𝔽(I).
  ∀u:{I+i,s(phi) ⊢ _:(A)<rho> iota}. ∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
    ((comp rho phi a0 (i1)(rho) g)
    (comp g,i=j(rho) g(phi) (u)subset-trans(I+i;J+j;g,i=j;s(phi)) (a0 (i0)(rho) g))
    ∈ A(g((i1)(rho))))



Definitions occuring in Statement :  cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) subset-trans: subset-trans(I;J;f;x) subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) nc-e': g,i=j nc-1: (i1) nc-0: (i0) nc-s: s add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: all: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions occuring in definition :  fset: fset(T) set: {x:A| B[x]}  nat: not: ¬A fset-member: a ∈ s int-deq: IntDeq names-hom: I ⟶ J I_cube: A(I) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s csm-comp: F cubical-subset: I,psi formal-cube: formal-cube(I) subset-iota: iota context-map: <rho> all: x:A. B[x] cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) equal: t ∈ T cubical-type-at: A(a) nc-1: (i1) apply: a csm-ap-term: (t)s subset-trans: subset-trans(I;J;f;x) nc-e': g,i=j face-presheaf: 𝔽 nc-s: s cubical-type-ap-morph: (u f) cube-set-restriction: f(s) add-name: I+i nc-0: (i0)
FDL editor aliases :  composition-uniformity

Latex:
composition-uniformity(Gamma;A;comp)  ==
    \mforall{}I,J:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}  I.  \mforall{}rho:Gamma(I+i).  \mforall{}phi:\mBbbF{}(I).
    \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}.  \mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
        ((comp  I  i  rho  phi  u  a0  (i1)(rho)  g)
        =  (comp  J  j  g,i=j(rho)  g(phi)  (u)subset-trans(I+i;J+j;g,i=j;s(phi))  (a0  (i0)(rho)  g)))



Date html generated: 2016_05_19-AM-09_21_42
Last ObjectModification: 2015_11_04-PM-01_30_13

Theory : cubical!type!theory


Home Index