Nuprl Definition : contraction-to-extend

contraction-to-extend(Gamma;A;cA;ctr) ==
  λH,sigma,phi,u. comp ((cA)sigma)p [phi ⟶ path-eta(contr-path((ctr)sigma;u))] contr-center((ctr)sigma)



Definitions occuring in Statement :  comp_term: comp cA [phi ⟶ u] a0 csm-comp-structure: (cA)tau contr-path: contr-path(c;x) contr-center: contr-center(c) path-eta: path-eta(pth) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s lambda: λx.A[x]
Definitions occuring in definition :  lambda: λx.A[x] comp_term: comp cA [phi ⟶ u] a0 cube-context-adjoin: X.A interval-type: 𝕀 cc-fst: p csm-comp-structure: (cA)tau path-eta: path-eta(pth) contr-path: contr-path(c;x) contr-center: contr-center(c) csm-ap-term: (t)s
FDL editor aliases :  contraction-to-extend

Latex:
contraction-to-extend(Gamma;A;cA;ctr)  ==
    \mlambda{}H,sigma,phi,u.  comp  ((cA)sigma)p  [phi  \mvdash{}\mrightarrow{}  path-eta(contr-path((ctr)sigma;u))]
                                            contr-center((ctr)sigma)



Date html generated: 2017_02_21-AM-10_58_41
Last ObjectModification: 2017_01_20-PM-11_33_01

Theory : cubical!type!theory


Home Index