Nuprl Definition : contraction-to-extend
contraction-to-extend(Gamma;A;cA;ctr) ==
  λH,sigma,phi,u. comp ((cA)sigma)p [phi ⟶ path-eta(contr-path((ctr)sigma;u))] contr-center((ctr)sigma)
Definitions occuring in Statement : 
comp_term: comp cA [phi ⟶ u] a0
, 
csm-comp-structure: (cA)tau
, 
contr-path: contr-path(c;x)
, 
contr-center: contr-center(c)
, 
path-eta: path-eta(pth)
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
lambda: λx.A[x]
Definitions occuring in definition : 
lambda: λx.A[x]
, 
comp_term: comp cA [phi ⟶ u] a0
, 
cube-context-adjoin: X.A
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-comp-structure: (cA)tau
, 
path-eta: path-eta(pth)
, 
contr-path: contr-path(c;x)
, 
contr-center: contr-center(c)
, 
csm-ap-term: (t)s
FDL editor aliases : 
contraction-to-extend
Latex:
contraction-to-extend(Gamma;A;cA;ctr)  ==
    \mlambda{}H,sigma,phi,u.  comp  ((cA)sigma)p  [phi  \mvdash{}\mrightarrow{}  path-eta(contr-path((ctr)sigma;u))]
                                            contr-center((ctr)sigma)
Date html generated:
2017_02_21-AM-10_58_41
Last ObjectModification:
2017_01_20-PM-11_33_01
Theory : cubical!type!theory
Home
Index