Nuprl Definition : cubical-path-condition'

cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) ==
  ∀J:fset(ℕ). ∀f:I,phi(J).  ((a1 (i1)(rho) f) u((i1) ⋅ f) ∈ A(f((i1)(rho))))



Definitions occuring in Statement :  cubical-term-at: u(a) cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-subset: I,psi cube-set-restriction: f(s) I_cube: A(I) nc-1: (i1) add-name: I+i nh-comp: g ⋅ f fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions occuring in definition :  fset: fset(T) nat: all: x:A. B[x] I_cube: A(I) cubical-subset: I,psi equal: t ∈ T cubical-type-at: A(a) cubical-type-ap-morph: (u f) cube-set-restriction: f(s) add-name: I+i cubical-term-at: u(a) nh-comp: g ⋅ f nc-1: (i1)
FDL editor aliases :  cubical-path-condition'

Latex:
cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1)  ==
    \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).    ((a1  (i1)(rho)  f)  =  u((i1)  \mcdot{}  f))



Date html generated: 2016_05_19-AM-09_18_17
Last ObjectModification: 2015_11_03-AM-00_30_11

Theory : cubical!type!theory


Home Index