Nuprl Definition : cubical-path-condition

cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) ==
  ∀J:fset(ℕ). ∀f:I,phi(J).  ((a0 (i0)(rho) f) u((i0) ⋅ f) ∈ A(f((i0)(rho))))



Definitions occuring in Statement :  cubical-term-at: u(a) cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-subset: I,psi cube-set-restriction: f(s) I_cube: A(I) nc-0: (i0) add-name: I+i nh-comp: g ⋅ f fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions occuring in definition :  fset: fset(T) nat: all: x:A. B[x] I_cube: A(I) cubical-subset: I,psi equal: t ∈ T cubical-type-at: A(a) cubical-type-ap-morph: (u f) cube-set-restriction: f(s) add-name: I+i cubical-term-at: u(a) nh-comp: g ⋅ f nc-0: (i0)
FDL editor aliases :  cubical-path-condition

Latex:
cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)  ==
    \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).    ((a0  (i0)(rho)  f)  =  u((i0)  \mcdot{}  f))



Date html generated: 2016_05_19-AM-09_17_07
Last ObjectModification: 2015_11_03-AM-00_16_16

Theory : cubical!type!theory


Home Index