Nuprl Definition : cubical-pi-family

cubical-pi-family(X;A;B;I;a) ==
  {w:J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:A(f(a)) ⟶ B((f(a);u))| 
   ∀J,K:fset(ℕ). ∀f:J ⟶ I. ∀g:K ⟶ J. ∀u:A(f(a)).  ((w (f(a);u) g) (w f ⋅ (u f(a) g)) ∈ B(g((f(a);u))))} 



Definitions occuring in Statement :  cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-ap-morph: (u f) cubical-type-at: A(a) cube-set-restriction: f(s) nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] fset: fset(T) nat: names-hom: I ⟶ J all: x:A. B[x] equal: t ∈ T cubical-type-at: A(a) cube-context-adjoin: X.A cc-adjoin-cube: (v;u) apply: a nh-comp: g ⋅ f cubical-type-ap-morph: (u f) cube-set-restriction: f(s)
FDL editor aliases :  cubical-pi-family cubical-pi-family

Latex:
cubical-pi-family(X;A;B;I;a)  ==
    \{w:J:fset(\mBbbN{})  {}\mrightarrow{}  f:J  {}\mrightarrow{}  I  {}\mrightarrow{}  u:A(f(a))  {}\mrightarrow{}  B((f(a);u))| 
      \mforall{}J,K:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J.  \mforall{}u:A(f(a)).
          ((w  J  f  u  (f(a);u)  g)  =  (w  K  f  \mcdot{}  g  (u  f(a)  g)))\} 



Date html generated: 2016_05_18-PM-01_44_57
Last ObjectModification: 2015_10_29-AM-00_22_48

Theory : cubical!type!theory


Home Index