Nuprl Definition : equiv-bijection-is
equiv-bijection-is(e) ==  <λa1,a2,eq. Ax, λb.<equiv-contr(e;discr(b)).1.1(⋅), Ax>>
Definitions occuring in Statement : 
equiv-contr: equiv-contr(f;a)
, 
discrete-cubical-term: discr(t)
, 
cubical-fst: p.1
, 
cubical-term-at: u(a)
, 
empty-fset: {}
, 
it: ⋅
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
axiom: Ax
Definitions occuring in definition : 
axiom: Ax
, 
it: ⋅
, 
empty-fset: {}
, 
discrete-cubical-term: discr(t)
, 
equiv-contr: equiv-contr(f;a)
, 
cubical-fst: p.1
, 
cubical-term-at: u(a)
, 
pair: <a, b>
, 
lambda: λx.A[x]
FDL editor aliases : 
equiv-bijection-is
Latex:
equiv-bijection-is(e)  ==    <\mlambda{}a1,a2,eq.  Ax,  \mlambda{}b.<equiv-contr(e;discr(b)).1.1(\mcdot{}),  Ax>>
Date html generated:
2017_02_21-AM-10_52_02
Last ObjectModification:
2017_02_13-PM-00_26_59
Theory : cubical!type!theory
Home
Index