Nuprl Definition : equiv-bijection-is

equiv-bijection-is(e) ==  <λa1,a2,eq. Ax, λb.<equiv-contr(e;discr(b)).1.1(⋅), Ax>>



Definitions occuring in Statement :  equiv-contr: equiv-contr(f;a) discrete-cubical-term: discr(t) cubical-fst: p.1 cubical-term-at: u(a) empty-fset: {} it: lambda: λx.A[x] pair: <a, b> axiom: Ax
Definitions occuring in definition :  axiom: Ax it: empty-fset: {} discrete-cubical-term: discr(t) equiv-contr: equiv-contr(f;a) cubical-fst: p.1 cubical-term-at: u(a) pair: <a, b> lambda: λx.A[x]
FDL editor aliases :  equiv-bijection-is

Latex:
equiv-bijection-is(e)  ==    <\mlambda{}a1,a2,eq.  Ax,  \mlambda{}b.<equiv-contr(e;discr(b)).1.1(\mcdot{}),  Ax>>



Date html generated: 2017_02_21-AM-10_52_02
Last ObjectModification: 2017_02_13-PM-00_26_59

Theory : cubical!type!theory


Home Index