Nuprl Definition : equiv_path

equiv_path(G;A;B;f) ==
  let equiv-path1(G;decode(A);decode(B);f) in
   let equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f) in
   encode(T;cfun-to-cop(G.𝕀;T;C))



Definitions occuring in Statement :  equiv-path2: equiv-path2(G;A;B;cA;cB;f) equiv-path1: equiv-path1(G;A;B;f) universe-comp-fun: CompFun(A) universe-decode: decode(t) universe-encode: encode(T;cT) comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) interval-type: 𝕀 cube-context-adjoin: X.A let: let
Definitions occuring in definition :  interval-type: 𝕀 cube-context-adjoin: X.A comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) universe-encode: encode(T;cT) universe-comp-fun: CompFun(A) universe-decode: decode(t) equiv-path2: equiv-path2(G;A;B;cA;cB;f) let: let equiv-path1: equiv-path1(G;A;B;f)
FDL editor aliases :  equiv_path

Latex:
equiv\_path(G;A;B;f)  ==
    let  T  =  equiv-path1(G;decode(A);decode(B);f)  in
      let  C  =  equiv-path2(G;decode(A);decode(B);CompFun(A);CompFun(B);f)  in
      encode(T;cfun-to-cop(G.\mBbbI{};T;C))



Date html generated: 2017_01_10-PM-00_21_08
Last ObjectModification: 2017_01_01-PM-10_26_17

Theory : cubical!type!theory


Home Index