Nuprl Definition : fill-type-up

fill-type-up(Gamma;A;cA) ==  (fill (cA)p+ [0(𝔽) ⟶ discr(⋅)] q)swap-interval(Gamma;(A)[0(𝕀)]))



Definitions occuring in Statement :  filling_term: fill cA [phi ⟶ u] a0 csm-composition: (comp)sigma face-0: 0(𝔽) swap-interval: swap-interval(G;A) interval-0: 0(𝕀) interval-type: 𝕀 discrete-cubical-term: discr(t) cubical-lambda: b) csm+: tau+ csm-id-adjoin: [u] cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s csm-ap-type: (AF)s it:
Definitions occuring in definition :  cc-snd: q it: discrete-cubical-term: discr(t) face-0: 0(𝔽) cc-fst: p interval-type: 𝕀 interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s cube-context-adjoin: X.A csm+: tau+ csm-composition: (comp)sigma filling_term: fill cA [phi ⟶ u] a0 swap-interval: swap-interval(G;A) csm-ap-term: (t)s cubical-lambda: b)
FDL editor aliases :  fill-type-up

Latex:
fill-type-up(Gamma;A;cA)  ==    (\mlambda{}(fill  (cA)p+  [0(\mBbbF{})  \mvdash{}\mrightarrow{}  discr(\mcdot{})]  q)swap-interval(Gamma;(A)[0(\mBbbI{})]))



Date html generated: 2017_01_19-PM-03_05_35
Last ObjectModification: 2017_01_11-AM-10_18_06

Theory : cubical!type!theory


Home Index