Nuprl Definition : filling-op
filling-op(Gamma;A) ==
{fill:I:fset(ℕ)
⟶ i:{i:ℕ| ¬i ∈ I}
⟶ rho:Gamma(I+i)
⟶ phi:𝔽(I)
⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}
⟶ a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
⟶ {a:A(rho)|
(section-iota(Gamma;A;I+i;rho;a) = u ∈ {I+i,s(phi) ⊢ _:(A)<rho> o iota}) ∧ ((a rho (i0)) = a0 ∈ A((i0)(rho)))} |
filling-uniformity(Gamma;A;fill)}
Definitions occuring in Statement :
filling-uniformity: filling-uniformity(Gamma;A;fill)
,
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
,
section-iota: section-iota(Gamma;A;I;rho;a)
,
cubical-term: {X ⊢ _:A}
,
csm-ap-type: (AF)s
,
cubical-type-ap-morph: (u a f)
,
cubical-type-at: A(a)
,
subset-iota: iota
,
cubical-subset: I,psi
,
face-presheaf: 𝔽
,
csm-comp: G o F
,
context-map: <rho>
,
formal-cube: formal-cube(I)
,
cube-set-restriction: f(s)
,
I_cube: A(I)
,
nc-0: (i0)
,
nc-s: s
,
add-name: I+i
,
fset-member: a ∈ s
,
fset: fset(T)
,
int-deq: IntDeq
,
nat: ℕ
,
not: ¬A
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions occuring in definition :
fset: fset(T)
,
nat: ℕ
,
not: ¬A
,
fset-member: a ∈ s
,
int-deq: IntDeq
,
I_cube: A(I)
,
function: x:A ⟶ B[x]
,
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
,
set: {x:A| B[x]}
,
and: P ∧ Q
,
cubical-term: {X ⊢ _:A}
,
csm-ap-type: (AF)s
,
csm-comp: G o F
,
cubical-subset: I,psi
,
face-presheaf: 𝔽
,
nc-s: s
,
formal-cube: formal-cube(I)
,
subset-iota: iota
,
context-map: <rho>
,
section-iota: section-iota(Gamma;A;I;rho;a)
,
equal: s = t ∈ T
,
cubical-type-at: A(a)
,
cube-set-restriction: f(s)
,
cubical-type-ap-morph: (u a f)
,
add-name: I+i
,
nc-0: (i0)
,
filling-uniformity: filling-uniformity(Gamma;A;fill)
FDL editor aliases :
filling-op
Latex:
filling-op(Gamma;A) ==
\{fill:I:fset(\mBbbN{})
{}\mrightarrow{} i:\{i:\mBbbN{}| \mneg{}i \mmember{} I\}
{}\mrightarrow{} rho:Gamma(I+i)
{}\mrightarrow{} phi:\mBbbF{}(I)
{}\mrightarrow{} u:\{I+i,s(phi) \mvdash{} \_:(A)<rho> o iota\}
{}\mrightarrow{} a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
{}\mrightarrow{} \{a:A(rho)| (section-iota(Gamma;A;I+i;rho;a) = u) \mwedge{} ((a rho (i0)) = a0)\} |
filling-uniformity(Gamma;A;fill)\}
Date html generated:
2016_05_19-AM-09_25_34
Last ObjectModification:
2016_01_26-PM-06_30_46
Theory : cubical!type!theory
Home
Index