Nuprl Definition : pres
pres f [phi ⊢→ t] t0 ==  <>(comp (cA)p+ [((phi)p ∨ (q=1)) ⊢→ (presw(G;phi;f;t;t0;cT))p+] (pres-a0(G;f;t0))p)
Definitions occuring in Statement : 
presw: presw(G;phi;f;t;t0;cT)
, 
pres-a0: pres-a0(G;f;t0)
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
csm-comp-structure: (cA)tau
, 
term-to-path: <>(a)
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
Definitions occuring in definition : 
pres-a0: pres-a0(G;f;t0)
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
presw: presw(G;phi;f;t;t0;cT)
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
csm+: tau+
, 
cc-snd: q
, 
face-one: (i=1)
, 
face-or: (a ∨ b)
, 
csm-comp-structure: (cA)tau
, 
comp_term: comp cA [phi ⊢→ u] a0
, 
term-to-path: <>(a)
FDL editor aliases : 
pres
Latex:
pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  ==
    <>(comp  (cA)p+  [((phi)p  \mvee{}  (q=1))  \mvdash{}\mrightarrow{}  (presw(G;phi;f;t;t0;cT))p+]  (pres-a0(G;f;t0))p)
Date html generated:
2016_05_19-AM-11_00_31
Last ObjectModification:
2016_04_18-PM-04_43_22
Theory : cubical!type!theory
Home
Index