Nuprl Definition : pres

pres [phi ⊢→ t] t0 ==  <>(comp (cA)p+ [((phi)p ∨ (q=1)) ⊢→ (presw(G;phi;f;t;t0;cT))p+] (pres-a0(G;f;t0))p)



Definitions occuring in Statement :  presw: presw(G;phi;f;t;t0;cT) pres-a0: pres-a0(G;f;t0) comp_term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau term-to-path: <>(a) face-one: (i=1) face-or: (a ∨ b) interval-type: 𝕀 csm+: tau+ cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s
Definitions occuring in definition :  pres-a0: pres-a0(G;f;t0) cc-fst: p csm-ap-term: (t)s presw: presw(G;phi;f;t;t0;cT) interval-type: 𝕀 cube-context-adjoin: X.A csm+: tau+ cc-snd: q face-one: (i=1) face-or: (a ∨ b) csm-comp-structure: (cA)tau comp_term: comp cA [phi ⊢→ u] a0 term-to-path: <>(a)
FDL editor aliases :  pres

Latex:
pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  ==
    <>(comp  (cA)p+  [((phi)p  \mvee{}  (q=1))  \mvdash{}\mrightarrow{}  (presw(G;phi;f;t;t0;cT))p+]  (pres-a0(G;f;t0))p)



Date html generated: 2016_05_19-AM-11_00_31
Last ObjectModification: 2016_04_18-PM-04_43_22

Theory : cubical!type!theory


Home Index