Nuprl Definition : trans-equiv-path

trans-equiv-path(G;A;B;f) ==
  let tr = λb.transprt-const(G.decode(A);(CompFun(B))p;b) in
   let app(equiv-fun((f)p); q) in
   cubical-lam(G;tr (tr b))



Definitions occuring in Statement :  universe-comp-fun: CompFun(A) universe-decode: decode(t) transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau equiv-fun: equiv-fun(f) cubical-app: app(w; u) cubical-lam: cubical-lam(X;b) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s let: let apply: a lambda: λx.A[x]
Definitions occuring in definition :  lambda: λx.A[x] transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau cube-context-adjoin: X.A universe-decode: decode(t) universe-comp-fun: CompFun(A) let: let cubical-app: app(w; u) equiv-fun: equiv-fun(f) csm-ap-term: (t)s cc-fst: p cc-snd: q cubical-lam: cubical-lam(X;b) apply: a
FDL editor aliases :  trans-equiv-path

Latex:
trans-equiv-path(G;A;B;f)  ==
    let  tr  =  \mlambda{}b.transprt-const(G.decode(A);(CompFun(B))p;b)  in
      let  b  =  app(equiv-fun((f)p);  q)  in
      cubical-lam(G;tr  (tr  b))



Date html generated: 2018_05_23-PM-06_18_44
Last ObjectModification: 2017_10_30-PM-06_50_29

Theory : cubical!type!theory


Home Index