Nuprl Definition : trans-equiv-path
trans-equiv-path(G;A;B;f) ==
  let tr = λb.transprt-const(G.decode(A);(CompFun(B))p;b) in
   let b = app(equiv-fun((f)p); q) in
   cubical-lam(G;tr (tr b))
Definitions occuring in Statement : 
universe-comp-fun: CompFun(A)
, 
universe-decode: decode(t)
, 
transprt-const: transprt-const(G;cA;a)
, 
csm-comp-structure: (cA)tau
, 
equiv-fun: equiv-fun(f)
, 
cubical-app: app(w; u)
, 
cubical-lam: cubical-lam(X;b)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
let: let, 
apply: f a
, 
lambda: λx.A[x]
Definitions occuring in definition : 
lambda: λx.A[x]
, 
transprt-const: transprt-const(G;cA;a)
, 
csm-comp-structure: (cA)tau
, 
cube-context-adjoin: X.A
, 
universe-decode: decode(t)
, 
universe-comp-fun: CompFun(A)
, 
let: let, 
cubical-app: app(w; u)
, 
equiv-fun: equiv-fun(f)
, 
csm-ap-term: (t)s
, 
cc-fst: p
, 
cc-snd: q
, 
cubical-lam: cubical-lam(X;b)
, 
apply: f a
FDL editor aliases : 
trans-equiv-path
Latex:
trans-equiv-path(G;A;B;f)  ==
    let  tr  =  \mlambda{}b.transprt-const(G.decode(A);(CompFun(B))p;b)  in
      let  b  =  app(equiv-fun((f)p);  q)  in
      cubical-lam(G;tr  (tr  b))
Date html generated:
2018_05_23-PM-06_18_44
Last ObjectModification:
2017_10_30-PM-06_50_29
Theory : cubical!type!theory
Home
Index