Nuprl Definition : uabeta_aux

uabeta_aux(G;A;B;f) ==
  let app(equiv-fun((f)p); q) in
   let b' transprt-const(G.decode(A);(CompFun(B))p;b) in
   let pth1 trans-const-path(G.decode(A);(CompFun(B))p;b') in
   let pth2 trans-const-path(G.decode(A);(CompFun(B))p;b) in
   pth1 pth2



Definitions occuring in Statement :  universe-comp-fun: CompFun(A) universe-decode: decode(t) comp_path: pth_a_b pth_b_c trans-const-path: trans-const-path(G;cA;a) transprt-const: transprt-const(G;cA;a) csm-comp-structure: (cA)tau equiv-fun: equiv-fun(f) cubical-app: app(w; u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s let: let
Definitions occuring in definition :  cubical-app: app(w; u) equiv-fun: equiv-fun(f) csm-ap-term: (t)s cc-snd: q transprt-const: transprt-const(G;cA;a) let: let trans-const-path: trans-const-path(G;cA;a) comp_path: pth_a_b pth_b_c csm-comp-structure: (cA)tau cube-context-adjoin: X.A universe-decode: decode(t) cc-fst: p universe-comp-fun: CompFun(A)
FDL editor aliases :  uabeta_aux

Latex:
uabeta\_aux(G;A;B;f)  ==
    let  b  =  app(equiv-fun((f)p);  q)  in
      let  b'  =  transprt-const(G.decode(A);(CompFun(B))p;b)  in
      let  pth1  =  trans-const-path(G.decode(A);(CompFun(B))p;b')  in
      let  pth2  =  trans-const-path(G.decode(A);(CompFun(B))p;b)  in
      pth1  +  pth2



Date html generated: 2018_05_23-PM-06_21_41
Last ObjectModification: 2017_10_31-AM-10_56_20

Theory : cubical!type!theory


Home Index